Does homeostasis or disturbance of homeostasis in minimum leaf water potential explain the isohydric versus anisohydric behavior of Vitis vinifera L. cultivars?

نویسندگان

  • Jean-Christophe Domec
  • Daniel M Johnson
چکیده

Due to the diurnal and seasonal fluctuations in leaf-to-air vapor pressure deficit (D), one of the key regulatory roles played by stomata is to limit transpiration-induced leaf water deficit. Different types of plants are known to vary in the sensitivity of stomatal conductance (gs) to D with important consequences for their survival and growth. Plants that minimize any increase in transpiration with increasing D have a tight stomatal regulation of a constant minimum leaf water potential (Ψleaf); these plants are termed as ‘isohydric’ (Stocker 1956). Plants that have less control of Ψleaf have been termed as ‘anisohydric’ (Tardieu and Simonneau 1998). Isohydric plants maintain a constant Ψleaf by reducing gs and transpiration under drought stress. Therefore, as drought pushes soil water potential (Ψsoil) below this Ψleaf set point, the plant can no longer extract water for gas exchange. Anisohydric plants allow Ψleaf to decrease with rising D, reaching a much lower Ψleaf in droughted plants relative to well-watered plants (Tardieu and Simonneau 1998), so this strategy produces a gradient between Ψsoil and Ψleaf that allows gas exchange to continue over a greater decline in Ψsoil. Thus, anisohydric plants sustain longer periods of transpiration and photosynthesis, even under large soil water deficit, and are thought to be more drought tolerant than isohydric species (McDowell 2011). In practice, the distinctions between isohydric and anisohydric strategies are often not clear (Franks et al. 2007), even among different cultivars of the same species. For example, cultivars of poplar (Hinckley et al. 1994) and grapevine (Schultz 2003, Lovisolo et al. 2010) have been shown to exhibit both contrasting hydraulic behaviors. A third mode of behavior was also suggested by Franks et al. (2007), in which the difference between soil and midday water potential (Ψsoil − Ψleaf) is maintained seasonally constant but Ψleaf fluctuates in synchrony with soil water availability (isohydrodynamic behavior). The lack of a clear distinction between these two strategies and the complex and variable responses of stomata to D under high and low soil moisture is depicted in two papers in this issue (Rogiers et al. 2012 and Zhang et al. 2012), showing that even typically anisohydric grape (Vitis vinifera L.) cultivars (Semillon and Merlot, respectively) may constrain gs during periods of extremely low Ψsoil. The same individuals can switch from an isohydric-like behavior when transpiration is low to an anisohydric-like behavior with increasing water demand. Interestingly, both studies indicated that classifying species as either isohydric or anisohydric is a simplistic view of stomatal functioning and does not represent well the complex stomatal behavior under drying soil, and Zhang et al. (2012) also reported an isohydrodynamic behavior. Both studies suggested that when soil water is limited, gs is aimed at protecting the integrity of the hydraulic system, whereas as soil water content increases, stomata regulate transpiration less. The results of Zhang et al. (2012) indicated that under limited soil moisture the decrease in gs with increasing D was proportional to reference gs (gs at D = 1 kPa); which is in agreement with the stomata-sensitivity model developed by Oren et al. (1999) for isohydric species (see xeric line in Figure 1A). However, a significant departure from this theoretical model was observed under high soil moisture (see wet and mesic lines in Figure 1B). Similarly, in this issue Rogiers et al. (2012) showed that under Tree Physiology 32, 245–248 doi:10.1093/treephys/tps013

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Comparison of Petiole Hydraulics and Aquaporin Expression in an Anisohydric and Isohydric Cultivar of Grapevine in Response to Water-Stress Induced Cavitation

We report physiological, anatomical and molecular differences in two economically important grapevine (Vitis vinifera L.) cultivars cv. Grenache (near-isohydric) and Chardonnay (anisohydric) in their response to water-stress induced cavitation. The aim of the study was to compare organ vulnerability (petiole and stem) to cavitation by measuring ultrasonic acoustic emissions (UAE) and percent lo...

متن کامل

Genetic variation in a grapevine progeny (Vitis vinifera L. cvs Grenache×Syrah) reveals inconsistencies between maintenance of daytime leaf water potential and response of transpiration rate under drought

In the face of water stress, plants evolved with different abilities to limit the decrease in leaf water potential, notably in the daytime (ΨM). So-called isohydric species efficiently maintain high ΨM, whereas anisohydric species cannot prevent ΨM from dropping as soil water deficit develops. The genetic and physiological origins of these differences in (an)isohydric behaviours remain to be cl...

متن کامل

Abscisic Acid Down-Regulates Hydraulic Conductance of Grapevine Leaves in Isohydric Genotypes Only.

Plants evolved different strategies to cope with water stress. While isohydric species maintain their midday leaf water potential (ΨM) under soil water deficit by closing their stomata, anisohydric species maintain higher stomatal aperture and exhibit substantial reductions in ΨM It was hypothesized that isohydry is related to a locally higher sensitivity of stomata to the drought-hormone absci...

متن کامل

The role of plasma membrane intrinsic protein aquaporins in water transport through roots: diurnal and drought stress responses reveal different strategies between isohydric and anisohydric cultivars of grapevine.

We report physiological and anatomical characteristics of water transport across roots grown in soil of two cultivars of grapevine (Vitis vinifera) differing in response to water stress (Grenache, isohydric; Chardonnay, anisohydric). Both cultivars have similar root hydraulic conductances (Lo; normalized to root dry weight) that change diurnally. There is a positive correlation between Lo and t...

متن کامل

Growth and physiological responses of isohydric and anisohydric poplars to drought

Understanding how different plants prioritize carbon gain and drought vulnerability under a variable water supply is important for predicting which trees will maximize woody biomass production under different environmental conditions. Here, Populus balsamifera (BS, isohydric genotype), P. simonii (SI, previously uncharacterized stomatal behaviour), and their cross, P. balsamifera x simonii (BSx...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Tree physiology

دوره 32 3  شماره 

صفحات  -

تاریخ انتشار 2012